So what is Digital Television. Part 2 - Back to Basics


Component digital video
The designers of early analogue special effects equipment recognized the advantage of keeping the red, green, and blue video channels separate as much as possible during any processing. The PAL and NTSC encoding/decoding process is not transparent and multiple generations of encoding and decoding progressively degrade the signal. The signal in the camera starts out with independent channels of red, green, and blue information, and it is best to handle these signals through the system with as few format generations as possible before encoding them into PAL or NTSC for transmission to the home.
But handling three separate coordinated channels of information through the television plant presents logistic and reliability problems. From a practical standpoint, these three signals should all coexist on one wire, or commonly a single coaxial cable. As it turns out, we can simply matrix these three components, the red, green, and blue video channels, to a more efficient set consisting of luma and two colour-difference signals; digitize each of them, and multiplex the data onto a single coaxial cable. We can handle this data signal much as we do traditional PAL or NTSC composite video. Now we are handling a high-speed stream of numeric data. Although this data signal contains energy changing at a much faster rate than the 5 to 6 MHz energy in a PAL or NTSC video signal, it can be handled losslessly and with less maintenance over reasonable distances. Once the video signal is in the digital domain, we can easily extract its components for individual processing and recombine them again in the digital domain without any further loss or interaction among the channels.
Component and digital techniques contribute significant advantages in video quality control, and the speed of digital devices has made the bandwidth of high-definition video practical. Digital also lends itself to processing with various compression algorithms to reduce the total amount of data needed. It is now possible to convey high-definition video and associated multichannel audio in the bandwidth required for high-quality real-time analogue video.
Moving Forward from Analogue to Digital
The digital data stream can be easily broken down into its separate components, often serving the same function as their analogue counterparts. We will continue with this analogy as we describe and compare the analogue and digital video domains. Once we clearly understand the similarity between analogue and digital video we can move to HDTV, which is often a digital representation of the corresponding high-definition analogue format.
PAL and NTSC video signals are composites of the three camera channels, the primary colour components red, green, and blue, matrixed together to form a luminance channel summed with the modulation products of a suppressed subcarrier containing two channels of colour information. A third system of single-channel composite transmission is the SECAM system, which uses a pair of frequency-modulated subcarriers to convey chroma information. In the studio, there is no specific requirement that the signal be PAL, NTSC or SECAM at any point between the camera RGB pickup devices and the RGB channels of the final display device. While an understanding of PAL, NTSC or SECAM is useful, we need not invest in any new study of composite video.
The RGB component signal
A video camera splits the light of the image into three primary colours – red, green, and blue. Sensors in the camera convert these individual monochrome images into separate electrical signals. Synchronization information is added to the signals to identify the left edge of the picture and the top of the picture. Information to synchronize the display with the camera may be added to the green channel or occasionally added to all three channels, or routed separately.
The simplest hookup, as shown in Figure 1, is direct R, G, and B, out of the camera, into the picture monitor. The multi-wire transmission system is the same for analogue standard or analogue high-definition video. A multi-wire connection might be used in small, permanently configured sub-systems.
This method produces a high-quality image from camera to display, but carrying the signals as three separate channels, involves the engineer to ensure each channel processes the signals with the same overall gain, direct curent (dc) offset, time delay, and frequency response. A gain inequality or dc offset error between the channels will produce subtle changes in the colour of the final display. The system could also suffer from timing errors, which could be produced from different lengths of cable or different methods of routing each signal from camera to display. This would produce timing offset between the channels producing a softening or blurring in the picture – and in severe cases multiple, separated images. A difference in frequency response between channels would cause transient effects as the channels were recombined.
Clearly, there is a need to handle the three channels as one.
Insertion of a PAL or NTSC encoder and decoder (Figure 2) does nothing for simplicity except make the signal easier to handle on one wire within the television plant. System bandwidth is compromised in a friendly way to contain the energy of the three video signals in 5.0 to 5.5 MHz (PAL) or 4.2 MHz (NTSC). The single-wire configuration makes video routing easier, but frequency response and timing must be considered over longer paths. Because both chroma and luma in the PAL or NTSC composite signal share the, 5.0, 5.5 or 4.2 MHz, multiple generations of encoding and decoding must be avoided.
By substituting component digital encoders and decoders, the hookup (Figure 3) is no more complex and is better in performance. Energy in the single coaxial cable is now at a data rate of 270 Mb/s for standard definition signals; 1.485 Gb/s or higher for high-definition signals. Standard definition signals could be converted to analogue NTSC or PAL for transmission within traditional broadcast television channels. High-definition signals must be compressed for on-air transmission within the channel bandwidth of existing PAL or NTSC channels.

Tags: iss055 | tektronix | digital television | pal | ntsc | secam | N/A
Contributing Author N/A

Read this article in the tv-bay digital magazine
Article Copyright tv-bay limited. All trademarks recognised.
Reproduction of the content strictly prohibited without written consent.

Related Interviews
  • Tektronix at IBC 2016

    Tektronix at IBC 2016

  • Tektronix at IBC 2015

    Tektronix at IBC 2015

  • Tektronix at IBC 2014

    Tektronix at IBC 2014

  • Tektronix at IBC 2013

    Tektronix at IBC 2013

  • Tektronix at IBC2011

    Tektronix at IBC2011

  • Sony HXR-MC88 palm-sized camcorder shown plus UWP series wireless transmission at NAB 2019

    Sony HXR-MC88 palm-sized camcorder shown plus UWP series wireless transmission at NAB 2019

  • 6K Sony Venice and Sony 4k Palm Camcorders at IBC 2017

    6K Sony Venice and Sony 4k Palm Camcorders at IBC 2017


Related Shows
  • Fantastic 4k: BVE Day 3

    Fantastic 4k: BVE Day 3


Articles
TV Futures - The Shadowing Experience
Daniel Jones My name is Daniel Jones, and it is no accident that I’m currently studying BSc (Hons) Television and Broadcasting at the University of Portsmouth. Since completing GSCE media studies I have been constantly questioning what I watch with questions such as, “Wow, how was that filmed?” or “That looks amazing, I wonder how long that took?” It should come as no surprise that I made it a big focus of mine to get myself some real work experience to give myself some answers to these production questions.
Tags: iss136 | portsmouth university | runner | student | education | training | Daniel Jones
Contributing Author Daniel Jones Click to read or download PDF
BSC Expo 2019 Report
Paul MacKenzie BSC Expo returned to the Battersea Evolution on Friday February 1st and Saturday 2nd. It is a busy and friendly event though this year in need of some temperature control: exhibitors around the entrance area were uncomfortably aware of the wintry conditions outside and the main hall was in need of cooling.
Tags: iss136 | bsc | cinematography | canon | c700 | c200 | cartoni | holdan | blackmagic | peli | panasonic | sennheiser | sony | fs5 | teradek | viten | flowtech | Paul MacKenzie
Contributing Author Paul MacKenzie Click to read or download PDF
Living LIVE at BVE with Ross Video
Jon Pratchett KitPlus’ Jon Pratchett chats to Stuart Russell, Ross Video, in the BVE studio. Covering customer partnerships and loyalty, pain points, growth, industry trends, pace of IP adoption, 12g SDI technologies, UHD / HDR, 8k, AI and we try to get a hint of new products on the horizon...
Tags: iss136 | ross video | 12g sdi | uhd | hdr | ip | bve 2019 | bvexpo | Jon Pratchett
Contributing Author Jon Pratchett Click to read or download PDF
4k and HDR Wireless Camera Transmitters
David Edwards Across the globe, live events represented over 50 percent of the most watched TV programs last year. However, big budget episodic shows are impacting live TV and the way viewers want to see their content. Viewers are demanding the same quality of production for live event broadcasts as they see in pre-recorded TV series and films. Producers of live content are looking to new, immersive and cinematic mobile camera views to better achieve these results. This presents a challenge to live production teams as these new camera views and angles must match the quality of the rest of the production -  the demand for mobility means that the cameras need to be wireless.
Tags: iss136 | wireless | hdr | 4k | transmitter | bandwidth | imt vislink | hcam | David Edwards
Contributing Author David Edwards Click to read or download PDF
Sennheiser Memory Mic User Review
Dr Anthony Willman The Sennheiser Memory mic, adding to the new generation of semi-professional equipment that is helping the need for high quality audio in parallel markets that until now, did not have the budgets to achieve ‘great’ results.
Tags: iss136 | sennheiser | memory mic | doctor | audio recorder | Dr Anthony Willman
Contributing Author Dr Anthony Willman Click to read or download PDF